
Chapter 13

Collecting All Sorts of Data
In This Chapter

▶ Defining a collection

▶ Using tuples

▶ Using dictionaries

▶ Developing stacks using lists

▶ Using the queue module

▶ Using the deque module

P

eople collect all sorts of things. The CDs stacked near your entertain-
ment center, the plates that are part of a series, baseball cards, and even

the pens from every restaurant you’ve ever visited are all collections. The
collections you encounter when you write applications are the same as the
collections in the real world. A collection is simply a grouping of like items in
one place and usually organized into some easily understood form.

 This chapter is about collections of various sorts. The central idea behind
every collection is to create an environment in which the collection is properly
managed and lets you easily locate precisely what you want at any given time.
A set of bookshelves works great for storing books, DVDs, and other sorts of
flat items. However, you probably put your pen collection in a holder or even
a display case. The difference in storage locations doesn’t change the fact that
both house collections. The same is true with computer collections. Yes, there
are differences between a stack and a queue, but the main idea is to provide
the means to manage data properly and make it easy to access when needed.

Understanding Collections
In Chapter 12, you’re introduced to sequences. A sequence is a succession
of values that are bound together in a container. The simplest sequence is
a string, which is a succession of characters. Next comes the list described
in Chapter 12, which is a succession of objects. Even though a string and a
list are both sequences, they have significant differences. For example, when
working with a string, you set all the characters to lowercase — something

244 Part III: Performing Common Tasks

you can’t do with a list. On the other hand, lists let you append new items,
which is something a string doesn’t support. Collections are simply another
kind of sequence, albeit a more complex sequence than you find in either a
string or list.

 No matter which sequence you use, they all support two functions: index()
and count(). The index() function always returns the position of a speci-
fied item in the sequence. For example, you can return the position of a char-
acter in a string or the position of an object in a list. The count() function
returns the number of times a specific item appears in the list. Again, the kind
of specific item depends upon the kind of sequence.

You can use collections to create database-like structures using Python. Each
collection type has a different purpose, and you use the various types in
specific ways. The important idea to remember is that collections are simply
another kind of sequence. As with every other kind of sequence, collections
always support the index() and count() functions as part of their base
functionality.

Python is designed to be extensible. However, it does rely on a base set of
collections that you can use to create most application types. This chapter
describes the most common collections:

 ✓ Tuple: A tuple is a collection used to create complex list-like sequences.
An advantage of tuples is that you can nest the content of a tuple. This
feature lets you create structures that can hold employee records or x-y
coordinate pairs.

 ✓ Dictionary: As with the real dictionaries, you create key/value pairs
when using the dictionary collection (think of a word and its associated
definition). A dictionary provides incredibly fast search times and makes
ordering data significantly easier.

 ✓ Stack: Most programming languages support stacks directly. However,
Python doesn’t support the stack, although there’s a work-around for
that. A stack is a first in/first out (FIFO) sequence. Think of a pile of
pancakes: You can add new pancakes to the top and also take them off
of the top. A stack is an important collection that you can simulate in
Python using a list, which is precisely what this chapter does.

 ✓ queue: A queue is a last in/first out (LIFO) collection. You use it to track
items that need to be processed in some way. Think of a queue as a
line at the bank. You go into the line, wait your turn, and are eventually
called to talk with a teller.

 ✓ deque: A double-ended queue (deque) is a queue-like structure that
lets you add or remove items from either end, but not from the middle.
You can use a deque as a queue or a stack or any other kind of collec-
tion to which you’re adding and from which you’re removing items in
an orderly manner (in contrast to lists, tuples, and dictionaries, which
allow randomized access and management).

245 Chapter 13: Collecting All Sorts of Data

Working with Tuples
As previously mentioned, a tuple is a collection used to create complex lists, in
which you can embed one tuple within another. This embedding lets you create
hierarchies with tuples. A hierarchy could be something as simple as the direc-
tory listing of your hard drive or an organizational chart for your company. The
idea is that you can create complex data structures using a tuple.

 Tuples are immutable, which means you can’t change them. You can create
a new tuple with the same name and modify it in some way, but you can’t
modify an existing tuple. Lists are mutable, which means that you can change
them. So, a tuple can seem at first to be at a disadvantage, but immutability
has all sorts of advantages, such as being more secure as well as faster. In
addition, immutable objects are easier to use with multiple processors.

The two biggest differences between a tuple and a list are that a tuple is immu-
table and allows you to embed one tuple inside another. The following steps
demonstrate how you can interact with a tuple in Python.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type MyTuple = (“Red”, “Blue”, “Green”) and press Enter.

 Python creates a tuple containing three strings.

 3. Type MyTuple and press Enter.

 You see the content of MyTuple, which is three strings, as shown in
Figure 13-1. Notice that the entries use single quotes, even though you
used double quotes to create the tuple. In addition, notice that a tuple
uses parentheses rather than square brackets, as lists do.

Figure 13-1:

Tuples use

parenthe-

ses, not

square

brackets.

246 Part III: Performing Common Tasks

 4. Type dir(MyTuple) and press Enter.

 Python presents a list of functions that you can use with tuples, as
shown in Figure 13-2. Notice that the list of functions appears signifi-
cantly smaller than the list of functions provided with lists in Chapter 12.
The count() and index() functions are present.

Figure 13-2:

Fewer

functions

seem to be

available

for use with

tuples.

 However, appearances can be deceiving. For example, you can add
new items using the __add__() function. When working with Python
objects, look at all the entries before you make a decision as to
functionality.

 5. Type MyTuple = MyTuple.__add__((“Purple”,)) and press Enter.

 This code adds a new tuple to MyTuple and places the result in a new
copy of MyTuple. The old copy of MyTuple is destroyed after the call.

 The __add__() function accepts only tuples as input. This means that
you must enclose the addition in parentheses. In addition, when creat-
ing a tuple with a single entry, you must add a comma after the entry, as
shown in the example. This is an odd Python rule that you need to keep
in mind or you’ll see an error message similar to this one:

TypeError: can only concatenate tuple (not "str") to
 tuple

 6. Type MyTuple and press Enter.

 The addition to MyTuple appears at the end of the list, as shown in
Figure 13-3. Notice that it appears at the same level as the other entries.

247 Chapter 13: Collecting All Sorts of Data

Figure 13-3:

This new

copy of

MyTuple

contains an

additional

entry.

 7. Type MyTuple = MyTuple.__add__((“Yellow”, (“Orange”, “Black”))) and
press Enter.

 This step adds three entries: Yellow, Orange, and Black. However,
Orange and Black are added as a tuple within the main tuple, which
creates a hierarchy. These two entries are actually treated as a single
entry within the main tuple.

 You can replace the __add__() function with the concatenation opera-
tor. For example, if you want to add Magenta to the front of the tuple list,
you type MyTuple = ("Magenta",) + MyTuple.

 8. Type MyTuple[4] and press Enter.

 Python displays a single member of MyTuple, Orange. Tuples use
indexes to access individual members, just as lists do. You can also
specify a range when needed. Anything you can do with a list index you
can also do with a tuple index.

 9. Type MyTuple[5] and press Enter.

 You see a tuple that contains Orange and Black. Of course, you might
not want to use both members in tuple form.

 Tuples do contain hierarchies on a regular basis. You can detect when
an index has returned another tuple, rather than a value, by testing for
type. For example, in this case, you could detect that the sixth item
(index 5) contains a tuple by typing type(MyTuple[5]) == tuple.
The output would be True in this case.

248 Part III: Performing Common Tasks

 10. Type MyTuple[5][0] and press Enter.

 At this point, you see Orange as output. Figure 13-4 shows the results
of the previous three commands so that you can see the progression
of index usage. The indexes always appear in order of their level in the
hierarchy.

Figure 13-4:

Use indexes

to gain

access to

the indi-

vidual tuple

members.

 Using a combination of indexes and the __add__() function (or the
concatenation operator, +), you can create flexible applications that
rely on tuples. For example, you can remove an element from a tuple by
making it equal to a range of values. If you wanted to remove the tuple
containing Orange and Black, you type MyTuple = MyTuple[0:5].

Working with Dictionaries
A Python dictionary works just the same as its real-world counterpart — you
create a key and value pair. It’s just like the word and definition in a diction-
ary. As with lists, dictionaries are mutable, which means that you can change

249 Chapter 13: Collecting All Sorts of Data

them as needed. The main reason to use a dictionary is to make informa-
tion lookup faster. The key is always short and unique so that the computer
doesn’t spend a lot of time looking for the information you need.

The following sections demonstrate how to create and use a dictionary. When
you know how to work with dictionaries, you use that knowledge to make up
for deficiencies in the Python language. Most languages include the concept
of a switch statement, which is essentially a menu of choices from which one
choice is selected. Python doesn’t include this option, so you must normally
rely on if...elif statements to perform the task. (Such statements work,
but they aren’t as clear as they could be.)

Creating and using a dictionary
Creating and using a dictionary is much like working with a list, except
that you must now define a key and value pair. Here are the special rules for
creating a key:

 ✓ The key must be unique. When you enter a duplicate key, the informa-
tion found in the second entry wins — the first entry is simply replaced
with the second.

 ✓ The key must be immutable. This rule means that you can use strings,
numbers, or tuples for the key. You can’t, however, use a list for a key.

You have no restrictions on the values you provide. A value can be any
Python object, so you can use a dictionary to access an employee record
or other complex data. The following steps help you understand how to use
dictionaries better.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type Colors = {“Sam”: “Blue”, “Amy”: “Red”, “Sarah”: “Yellow”} and
press Enter.

 Python creates a dictionary containing three entries with people’s
favorite colors. Notice how you create the key and value pair. The
key comes first, followed by a colon and then the value. Each entry is
separated by a comma.

 3. Type Colors and press Enter.

 You see the key and value pairs, as shown in Figure 13-5. However, notice
that the entries are sorted in key order. A dictionary automatically keeps
the keys sorted to make access faster, which means that you get fast

250 Part III: Performing Common Tasks

search times even when working with a large data set. The downside is
that creating the dictionary takes longer than using something like a
list because the computer is busy sorting the entries.

Figure 13-5:

A diction-

ary places

entries in

sorted order.

 4. Type Colors[“Sarah”] and press Enter.

 You see the color associated with Sarah, Yellow, as shown in Figure 13-6.
Using a string as a key, rather than using a numeric index, makes the
code easier to read and makes it self-documenting to an extent. By
making your code more readable, dictionaries save you considerable
time in the long run (which is why they’re so popular). However, the
convenience of a dictionary comes at the cost of additional creation
time and a higher use of resources, so you have trade-offs to consider.

Figure 13-6:

Dictionaries

make value

access easy

and self-

documenting.

 5. Type Colors.keys() and press Enter.

 The dictionary presents a list of the keys it contains, as shown in
Figure 13-7. You can use these keys to automate access to the dictionary.

251 Chapter 13: Collecting All Sorts of Data

Figure 13-7:

You can ask

a dictionary

for a list of

keys.

 6. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

for Item in Colors.keys():
 print("{0} likes the color {1}."
 .format(Item, Colors[Item]))

 The example code outputs a listing of each of the user names and the
user’s favorite color, as shown in Figure 13-8. Using dictionaries can
make creating useful output a lot easier. The use of a meaningful key
means that the key can easily be part of the output.

Figure 13-8:

You can

create

useful keys

to output

information

with greater

ease.

252 Part III: Performing Common Tasks

 7. Type Colors[“Sarah”] = “Purple” and press Enter.

 The dictionary content is updated so that Sarah now likes Purple
instead of Yellow.

 8. Type Colors.update({“Harry”: “Orange”}) and press Enter.

 A new entry is added to the dictionary.

 9. Place your cursor at the end of the third line of the code you typed in
Step 6 and press Enter.

 The editor creates a copy of the code for you. This is a time-saving tech-
nique that you can use in the Python Shell when you experiment while
using code that takes a while to type. Even though you have to type it
the first time, you have no good reason to type it the second time.

 10. Press Enter twice.

 You see the updated output in Figure 13-9. Notice that Harry is added in
sorted order. In addition, Sarah’s entry is changed to the color Purple.

Figure 13-9:

Dictionaries

are easy to

modify.

253 Chapter 13: Collecting All Sorts of Data

 11. Type del Colors[“Sam”] and press Enter.

 Python removes Sam’s entry from the dictionary.

 12. Repeat Steps 9 and 10.

 You verify that Sam’s entry is actually gone.

 13. Type len(Colors) and press Enter.

 The output value of 3 verifies that the dictionary contains only three
entries now, rather than 4.

 14. Type Colors.clear() and press Enter.

 15. Type len(Colors) and press Enter.

 Python reports that Colors has 0 entries, so the dictionary is now empty.

 16. Close the Python Shell window.

Replacing the switch statement
with a dictionary
Most programming languages provide some sort of switch statement. A
switch statement provides for elegant menu type selections. The user has a
number of options but is allowed to choose only one of them. The program
takes some course of action based on the user selection. Here is some rep-
resentative code (it won’t execute) of a switch statement you might find in
another language:

switch(n)
{
 case 0:
 print("You selected blue.");
 break;
 case 1:
 print("You selected yellow.");
 break;
 case 2:
 print("You selected green.");
 break;
}

The application normally presents a menu-type interface, obtains the number
of the selection from the user, and then chooses the correct course of action
from the switch statement. It’s straightforward and much neater than using
a series of if statements to accomplish the same task.

254 Part III: Performing Common Tasks

Unfortunately, Python doesn’t come with a switch statement. The best you
can hope to do is use an if...elif statement for the task. However, by
using a dictionary, you can simulate the use of a switch statement. The
following steps help you create an example that will demonstrate the required
technique. This example also appears with the downloadable source code as
PythonSwitch.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

def PrintBlue():
 print("You chose blue!\r\n")

def PrintRed():
 print("You chose red!\r\n")

def PrintOrange():
 print("You chose orange!\r\n")

def PrintYellow():
 print("You chose yellow!\r\n")

 Before the code can do anything for you, you must define the tasks. Each
of these functions defines a task associated with selecting a color option
onscreen. Only one of them gets called at any given time.

 3. Type the following code into the window — pressing Enter after
each line:

ColorSelect = {
 0: PrintBlue,
 1: PrintRed,
 2: PrintOrange,
 3: PrintYellow
}

 This code is the dictionary. Each key is like the case part of the
switch statement. The values specify what to do. In other words, this
is the switch structure. The functions that you created earlier are the
action part of the switch — the part that goes between the case state-
ment and the break clause.

255 Chapter 13: Collecting All Sorts of Data

 4. Type the following code into the window — pressing Enter after
each line:

Selection = 0

while (Selection != 4):
 print("0. Blue")
 print("1. Red")
 print("2. Orange")
 print("3. Yellow")
 print("4. Quit")

 Selection = int(input("Select a color option: "))

 if (Selection >= 0) and (Selection < 4):
 ColorSelect[Selection]()

 Finally, you see the user interface part of the example. The code begins
by creating an input variable, Selection. It then goes into a loop until
the user enters a value of 4.

 During each loop, the application displays a list of options and then
waits for user input. When the user does provide input, the application
performs a range check on it. Any value between 0 and 3 selects one of
the functions defined earlier using the dictionary as the switching
mechanism.

 5. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays a menu
like the one shown in Figure 13-10.

Figure 13-10:

The

application

begins by

displaying

the menu.

256 Part III: Performing Common Tasks

 6. Type 0 and press Enter.

 The application tells you that you selected blue and then displays the
menu again, as shown in Figure 13-11.

Figure 13-11:

After dis-

playing your

selection,

the applica-

tion displays

the menu

again.

 7. Type 4 and press Enter.

 The application ends.

Creating Stacks Using Lists
A stack is a handy programming structure because you can use it to save an
application execution environment (the state of variables and other attri-
butes of the application environment at any given time) or as a means of
determining an order of execution. Unfortunately, Python doesn’t provide
a stack as a collection. However, it does provide lists, and you can use a
list as a perfectly acceptable stack. The following steps help you create
an example of using a list as a stack. This example also appears with the
downloadable source code as ListStack.py.

257 Chapter 13: Collecting All Sorts of Data

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

MyStack = []
StackSize = 3

def DisplayStack():
 print("Stack currently contains:")
 for Item in MyStack:
 print(Item)

def Push(Value):
 if len(MyStack) < StackSize:
 MyStack.append(Value)
 else:
 print("Stack is full!")

def Pop():
 if len(MyStack) > 0:
 MyStack.pop()
 else:
 print("Stack is empty.")

Push(1)
Push(2)
Push(3)
DisplayStack()
input("Press any key when ready...")

Push(4)
DisplayStack()
input("Press any key when ready...")

Pop()
DisplayStack()
input("Press any key when ready...")

Pop()
Pop()
Pop()
DisplayStack()

258 Part III: Performing Common Tasks

 In this example, the application creates a list and a variable to deter-
mine the maximum stack size. Stacks normally have a specific size
range. This is admittedly a really small stack, but it serves well for the
example’s needs.

 Stacks work by pushing a value onto the top of the stack and popping
values back off the top of the stack. The Push() and Pop() functions
perform these two tasks. The code adds DisplayStack() to make it
easier to see the stack content as needed.

 The remaining code exercises the stack (demonstrates its functionality)
by pushing values onto it and then removing them. There are four main
exercise sections that test stack functionality.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application fills the stack with
information and then displays it onscreen, as shown in Figure 13-12. In
this case, 3 is at the top of the stack because it’s the last value added.

Figure 13-12:

A stack

pushes

values one

on top of the

other.

 4. Press Enter.

 The application attempts to push another value onto the stack. However,
the stack is full, so the task fails, as shown in Figure 13-13.

 5. Press Enter.

 The application pops a value from the top of the stack. Remember that 3
is the top of the stack, so that’s the value that is missing in Figure 13-14.

259 Chapter 13: Collecting All Sorts of Data

Figure 13-13:

When the

stack is

full, it can’t

accept any

more values.

Figure 13-14:

Popping a

value means

removing it

from the top

of the stack.

 6. Press Enter.

 The application tries to pop more values from the stack than it contains,
resulting in an error, as shown in Figure 13-15. Any stack implementa-
tion that you create must be able to detect both overflows (too many
entries) and underflows (too few entries).

260 Part III: Performing Common Tasks

Figure 13-15:

Make sure

that your

stack imple-

mentation

detects

overflows

and

underflows.

Working with queues
A queue works differently from a stack. Think of any line you’ve ever stood
in: You go to the back of the line, and when you reach the front of the line you
get to do whatever you stood in the line to do. A queue is often used for task
scheduling and to maintain program flow — just as it is in the real world. The
following steps help you create a queue-based application. This example also
appears with the downloadable source code as QueueData.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import queue

MyQueue = queue.Queue(3)

print(MyQueue.empty())
input("Press any key when ready...")

261 Chapter 13: Collecting All Sorts of Data

MyQueue.put(1)
MyQueue.put(2)
print(MyQueue.full())
input("Press any key when ready...")

MyQueue.put(3)
print(MyQueue.full())
input("Press any key when ready...")

print(MyQueue.get())
print(MyQueue.empty())
print(MyQueue.full())
input("Press any key when ready...")

print(MyQueue.get())
print(MyQueue.get())

 To create a queue, you must import the queue module. This module
actually contains a number of queue types, but this example uses only
the standard FIFO queue.

 When a queue is empty, the empty() function returns True. Likewise,
when a queue is full, the full() function returns True. By testing the
state of empty() and full(), you can determine whether you need to
perform additional work with the queue or whether you can add other
information to it. These two functions help you manage a queue. It’s
not possible to iterate through a queue using a for loop as you have
done with other collection types, so you must monitor empty() and
full() instead.

 The two functions used to work with data in a queue are put(), which
adds new data, and get(), which removes data. A problem with queues
is that if you try to put more items into the queue than it can hold, it
simply waits until space is available to hold it. Unless you’re using a
multithreaded application (one that uses individual threads of execu-
tion to perform more than one task at one time), this state could end up
freezing your application.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application tests the state of
the queue. In this case, you see an output of True, which means that
the queue is empty.

 4. Press Enter.

 The application adds two new values to the queue. In doing so, the
queue is no longer empty, as shown in Figure 13-16.

262 Part III: Performing Common Tasks

Figure 13-16:

When the

application

puts new

entries in

the queue,

the queue

no longer

reports that

it’s empty.

 5. Press Enter.

 The application adds another entry to the queue, which means that
the queue is now full because it was set to a size of 3. This means that
full() will return True because the queue is now full.

 6. Press Enter.

 To free space in the queue, the application gets one of the entries.
Whenever an application gets an entry, the get() function returns that
entry. Given that 1 was the first value added to the queue, the print()
function should return a value of 1, as shown in Figure 13-17. In addition,
both empty() and full() should now return False.

Figure 13-17:

Monitoring

is a key part

of work-

ing with

queues.

 7. Press Enter.

 The application gets the remaining two entries. You see 2 and 3 (in turn)
as output.

263 Chapter 13: Collecting All Sorts of Data

Working with deques
A deque is simply a queue where you can remove and add items from either
end. In many languages, a queue or stack starts out as a deque. Specialized
code serves to limit deque functionality to what is needed to perform a
particular task.

When working with a deque, you need to think of the deque as a sort of
horizontal line. Certain individual functions work with the left and right
ends of the deque so that you can add and remove items from either side.
The following steps help you create an example that demonstrates deque
usage. This example also appears with the downloadable source code as
DequeData.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line.

import collections

MyDeque = collections.deque("abcdef", 10)

print("Starting state:")
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nAppending and extending right")
MyDeque.append("h")
MyDeque.extend("ij")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))

print("\r\nPopping right")
print("Popping {0}".format(MyDeque.pop()))
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nAppending and extending left")
MyDeque.appendleft("a")
MyDeque.extendleft("bc")
for Item in MyDeque:
 print(Item, end=" ")
print("\r\nMyDeque contains {0} items."
 .format(len(MyDeque)))

264 Part III: Performing Common Tasks

print("\r\nPopping left")
print("Popping {0}".format(MyDeque.popleft()))
for Item in MyDeque:
 print(Item, end=" ")

print("\r\n\r\nRemoving")
MyDeque.remove("a")
for Item in MyDeque:
 print(Item, end=" ")

 The implementation of deque is found in the collections module, so
you need to import it into your code. When you create a deque, you
can optionally specify a starting list of iterable items (items that can be
accessed and processed as part of a loop structure) and a maximum
size, as shown.

 A deque differentiates between adding one item and adding a group of
items. You use append() or appendleft() when adding a single item.
The extend() and extendleft() functions let you add multiple items.
You use the pop() or popleft() functions to remove one item at a
time. The act of popping values returns the value popped, so the exam-
ple prints the value onscreen. The remove() function is unique in that
it always works from the left side and always removes the first instance
of the requested data.

 Unlike some other collections, a deque is fully iterable. This means that
you can obtain a list of items using a for loop whenever necessary.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The example outputs the information
shown in Figure 13-18.

 It’s important to follow the output listing closely. Notice how the size
of the deque changes over time. After the application pops the j, the
deque still contains eight items. When the application appends and
extends from the left, it adds three more items. However, the resulting
deque contains only ten items. When you exceed the maximum size of a
deque, the extra data simply falls off the other end.

265 Chapter 13: Collecting All Sorts of Data

Figure 13-18:

A deque

provides

the double-

ended func-

tionality and

other fea-

tures you’d

expect.

266 Part III: Performing Common Tasks

